我接触的学生中有不少是异类,其中大部分都对那些抽象的世界特别感兴趣,有些是哲学和人文,有些是诗歌,有些则是天文物理。
相对而言,有些孩子则是相反的,他们喜欢的是化妆、武器、机器人。
下面这篇文章我把它翻译给上面那些和我同一阵营的孩子 – 擅长抽象思维的同学,也许看不太懂,没关系,了解一些就可以了。

String Theory: Putting the Universe in a String 弦理论: 将宇宙放在一根弦上
两位作者: Tannishtha Bag / Sunam Biswas
As we go along with the scientifically accepted Big Bang theory stating that our universe originated from the singularity, the tendency to unify various theories and models explaining disparate phenomena which arose around the nineteenth and twentieth century seems very likely.
科学界已经基本接受了大爆炸理论,它指出,我们的宇宙起源于一个奇点,从那以后,找到一个可以统一各种理论和模型,可以解释 19 世纪和 20 世纪出现的不同现象的理论似乎变得很有可能实现了。

Presently, modern physics rests upon the theories of General Relativity (focuses on gravity for understanding the universe in regions of both large scale and high mass: stars, galaxies, clusters of galaxies)
目前,现代物理学有两大基石: 第一个是广义相对论(专注于引力,帮助我们理解大尺度和高质量区域的宇宙:恒星、星系、星系团)。
and Quantum Mechanics (concerning with the three non-gravitational forces, small scale, and low mass: sub-atomic particles, atoms, molecules).
第二是量子力学(关注三种非引力,都具有小尺度和低质量的特征:亚原子粒子、原子、分子)。
Though thoroughly proven in their separate fields of relevance, none of the two justify phenomena at the Planck scale requiring a single unified force.
尽管这两种理论在它们各自的相关领域中都得到了充分证明,但它们都不能证明普朗克尺度的一些现象,那需要的是单一的统一的力量。
Thus, a hypothetical framework, capable of fusing these incongruous theories and thus unveiling deeper realities of the universe — ’Theory of Everything’ was assumed to exist.
因此,科学家们开始假定,存在这么一个框架,能够融合这些不协调的理论,从而揭示宇宙的更深层次的现实——它叫“万物理论”。

String Theory has been one of the contenders in this conquest of stringing the universe together in a single theoretical model.
弦理论就是这么一种可以成长为万物理论的潜在竞争者,它一直在努力描述一个单一理论模型,将宇宙全部串联在一起。
Since the early 20th century, Nature’s fundamental constituents have been considered to be indivisible, dot-like particles — electrons, quarks, and neutrinos — bereft of internal machinery.
自 20 世纪初以来,大自然的基本成分一直被认为是不可分割的点状粒子——电子、夸克和中微子——再没有内部机制。
String theory challenges this by proposing that at the heart of every particle is a tiny, vibrating string-like filament.
而弦理论不认同这一点,它提出,上述每个粒子的核心还有内部结构,是一个微小的、振动的弦状细丝。

It claims that the differences between one particle and another — their masses, electric charges, spin and nuclear properties — all arise from differences in how their internal strings vibrate and twist themselves in various complex ways.
它声称,一个粒子和另一个粒子之间的差异——它们的质量、电荷、自旋和核特性——都源于它们内部的弦,以各种复杂的方式振动和扭曲,从而产生了差异。
Switching from dimensionless particles to unidimensional strings also adds extra dimensions to our currently approved 3-dimensional space model.
从无维度的粒子切换到一维的弦,也为我们目前所熟悉的 三 维空间模型增加了额外的维度。
Delightfully, the mathematics revealed that one of these notes had properties precisely matching those of the ‘Graviton’, a hypothetical particle that, according to quantum physics, should carry the force of gravity from one location to another.
令人高兴的是,数学揭示了其中一个特性与“引力子”的特性完全匹配,“引力子”是一种假设粒子,根据量子物理学,应该能将引力从一个位置传递到另一个位置。

Researchers have used results from anti-de Sitter/conformal field theory (AdS/CFT) correspondence in the formulation of string theory to answer many fundamental questions in quantum field theory, condensed matter physics, cosmology (specifically attempting to explain events just after the big bang) as well as quantum gravity (explains Black hole information paradox to some extent).
科研人员使用反德西特/共形场论 (AdS/CFT) 对应的结果来构建弦理论,以回答量子场论、凝聚态物理、宇宙学中的许多基本问题(特别是试图解释大 爆炸)以及量子引力(在一定程度上解释了黑洞信息悖论)。
It has also sparked the idea of the possibility of a multiverse (Each having a separate seemingly consistent vacuum model and cosmological constant).
它还引发了多重宇宙可能性的想法(每个宇宙都有一个独立的,看上去一致的真空模型,和宇宙学常数)。
While this theory seemed to lead the scientists closer to reality, several variables popped into the picture.
虽然这一理论似乎的确让科学家们更接近现实,但其中也出现了几个变数。
Current comprehensions of String theory devices an enormous number of vacuum states (corresponding to the various shapes suggested for the extra dimensions of space), estimated to be around 10⁵⁰⁰, might be sufficiently diverse to accommodate almost any phenomenon that might be observed at low energies, and thus destroys the hope of using the theory to predict anything.
目前对弦理论机制的理解有大量的真空状态(对应于为那些具有额外维度[超过三维]的空间提出的各种形状),估计约为 10⁵⁰⁰,这个可能足够多样化,以适应几乎任何可能在低能下观察到的现象, 从而破坏了使用该理论来预测任何事情的希望。
None of the confirmed vacuum models in the string theory landscape is known to support a metastable, positive cosmological Constant on contrary to some popular dark energy models.
与一些流行的暗能量模型相反,弦理论领域中已确认的真空模型中,没有一个支持亚稳态的正宇宙常数。
In string theory, one must typically specify a fixed reference geometry for spacetime, and all other possible geometries described as perturbations of this fixed one.
在弦理论中,通常必须为时空指定一个固定的参考几何,以及所有其他可能的描述为这个固定参考的扰动的几何。
This contradicts the fundamental property of Einstein’s theory of relativity being Background independent.
这与爱因斯坦相对论中,背景无关这个基本特性相矛盾。
Lack of technologies to function high energy experiments required for probing this infinitesimally small structure and several inconsistencies as compared to the presently approved theories have left String theory unresolved.
目前人类缺乏进行探测这种极小结构所需的高能实验的技术,同时它与目前广泛认可的理论相比,有一些不一致之处,这两个原因使得弦理论并没有得到解决。
An unresolved mystery that still holds some hopes to give new definitions to the universe or many other universes that might be existing out there.
尽管如此,作为是一个未解之谜,弦理论仍然有希望为宇宙或可能存在的许多其他宇宙,提供全新的定义。